M.Sc. Semester-III Core Course - 7 (CC-7) Application of Spectroscopy



#### **III. Nuclear Magnetic Resonance Spectroscopy**

#### L2: Chemical Shift



Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

## **Chemical Shift**

- We define the relative position of absorption in the NMR spectrum the <u>chemical shift</u>. It is a unitless number (actually a ratio, in which the units cancel), but we assign 'units' of ppm or δ (Greek letter delta) units.
- For <sup>1</sup>H, the usual scale of NMR spectra is 0 to 10 (or 12) ppm (or  $\delta$ ).
- The usual <sup>13</sup>C scale goes from 0 to about 220 ppm.
- The zero point is defined as the position of absorption of a standard, tetramethylsilane (TMS):
- This standard has only one type of C and only one type of H.

CH<sub>3</sub> CH<sub>3</sub>-Si-CH<sub>3</sub> | CH<sub>3</sub>

#### **Chemical Shifts**



### **Chemical Shifts**

- Both <sup>1</sup>H and <sup>13</sup>C Chemical shifts are related to three major factors:
  - The hybridization (of carbon)
  - Presence of electronegative atoms or electron attracting groups
  - The degree of substitution (1°, 2° or 3°). These latter effects are most important in <sup>13</sup>C NMR, and in that context are usually called 'steric' effects.
- Now we'll turn our attention to <sup>1</sup>H NMR spectra (they are more complex, but provide more structural information)

#### <sup>1</sup>H Chemical Shifts



# **Thank You**



Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi